A biodegradable and biocompatible gecko-inspired tissue adhesive.
نویسندگان
چکیده
There is a significant medical need for tough biodegradable polymer adhesives that can adapt to or recover from various mechanical deformations while remaining strongly attached to the underlying tissue. We approached this problem by using a polymer poly(glycerol-co-sebacate acrylate) and modifying the surface to mimic the nanotopography of gecko feet, which allows attachment to vertical surfaces. Translation of existing gecko-inspired adhesives for medical applications is complex, as multiple parameters must be optimized, including: biocompatibility, biodegradation, strong adhesive tissue bonding, as well as compliance and conformability to tissue surfaces. Ideally these adhesives would also have the ability to deliver drugs or growth factors to promote healing. As a first demonstration, we have created a gecko-inspired tissue adhesive from a biocompatible and biodegradable elastomer combined with a thin tissue-reactive biocompatible surface coating. Tissue adhesion was optimized by varying dimensions of the nanoscale pillars, including the ratio of tip diameter to pitch and the ratio of tip diameter to base diameter. Coating these nanomolded pillars of biodegradable elastomers with a thin layer of oxidized dextran significantly increased the interfacial adhesion strength on porcine intestine tissue in vitro and in the rat abdominal subfascial in vivo environment. This gecko-inspired medical adhesive may have potential applications for sealing wounds and for replacement or augmentation of sutures or staples.
منابع مشابه
Towards gecko-feet-inspired bandages.
A novel bandage inspired by gecko feet might one day be used during emergencies and internal surgeries. The bandage uses a combination of nanofabricated structures, biodegradable materials and adhesive surface chemistry that allows adhesion onto even wet, moving tissue.
متن کاملStaying sticky: contact self-cleaning of gecko-inspired adhesives.
The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attach...
متن کاملA gecko-inspired double-sided adhesive.
Geckos' outstanding abilities to adhere to various surfaces are widely credited to the large actual contact areas of the fibrillar and hierarchical structures on their feet. These special features regulate the essential structural compliance for every attachment and thus provide robust yet reversible adhesions. Inspired by gecko's feet and our commonly used double-faced tape, we have successful...
متن کاملAdhesive Stress Distribution Measurement on a Gecko
Gecko adhesion has inspired climbing robots and synthetic adhesive grippers. Distributing loads between patches of adhesive is important for maximum performance in gecko-inspired devices, but it is unknown how the gecko distributes loads over its toes. We report in vivo measurements of stress distributions on gecko toes. The results are significantly non-uniform. Gecko-inspired adhesives are se...
متن کاملTowards friction and adhesion from high modulus microfiber arrays
Unlike traditional pressure sensitive adhesives, the natural setal arrays of gecko lizards achieve dry adhesion with stiff, keratinous material. This remarkable property has inspired a new class of adhesive and high friction microstructures composed of stiff materials that, like natural setae, have an elastic modulus greater than 1 GPa. In contrast to softer materials, such as rubber and low mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 7 شماره
صفحات -
تاریخ انتشار 2008